<table>
<thead>
<tr>
<th>S.N o</th>
<th>Course Category</th>
<th>Course Code (New)</th>
<th>Subject</th>
<th>Period Per Week</th>
<th>Theoretical</th>
<th>Practical</th>
<th>Internal Assessment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>C</td>
<td>MST</td>
</tr>
<tr>
<td>1.</td>
<td>BS-5</td>
<td>BE-301</td>
<td>Mathematics III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>HS-2</td>
<td>CS/IT/EC/..302</td>
<td>Energy, Environ. Ethics & Society</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>DC-1</td>
<td>EC-303</td>
<td>Electronic Instrumentation</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>DC-2</td>
<td>EC/BM-304</td>
<td>Electronic Devices</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>DID-1</td>
<td>EC/EX-305</td>
<td>Network Analysis</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>IT-2</td>
<td>CS/EC-306</td>
<td>Java</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>NECC-1</td>
<td>EC-307</td>
<td>Self Study</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>NECC-2</td>
<td>EC-308</td>
<td>Seminar/ Group Discussion etc.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>5</td>
<td>12</td>
<td>32</td>
<td>500</td>
</tr>
</tbody>
</table>

BS: Basic Sciences
HS: Humanity Sciences
DC: Department Core
DID: Department Inter Disciplinary
IT: Information Technology subjects
NECC: Non Exam Credit Course
MST: Mid Semester Test
TW: Term Work (Session/ Practical)
C: Credits
P: Practical Hrs
Rajiv Gandhi Technological University, Bhopal (MP)

Revised Syllabus and Scheme of Examination Effective from July 2007

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Category</th>
<th>Course Codes (New)</th>
<th>Subject</th>
<th>Period Per Week</th>
<th>Distribution of Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P C</td>
<td>Theory Practical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MST TW</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>DID-2</td>
<td>CS/IT/EC-401</td>
<td>Computer System Organization</td>
<td>3 1 0 4</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>DID-3</td>
<td>EC-402</td>
<td>Control Systems</td>
<td>3 1 0 4</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>DC 3</td>
<td>EC 403</td>
<td>Digital Electronics</td>
<td>3 1 2 6</td>
<td>100 50</td>
</tr>
<tr>
<td>4.</td>
<td>DC 4</td>
<td>EC 404</td>
<td>Electronic Circuits</td>
<td>3 1 2 6</td>
<td>100 50</td>
</tr>
<tr>
<td>5.</td>
<td>DC-5</td>
<td>EC-405</td>
<td>Analog Communication</td>
<td>3 1 2 6</td>
<td>100 50</td>
</tr>
<tr>
<td>6.</td>
<td>IT-3</td>
<td>EC-406</td>
<td>Software lab – I</td>
<td>0 0 4 4</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>NECC-3</td>
<td>EC-407</td>
<td>Self Study</td>
<td>0 0 1 1</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>NECC-4</td>
<td>EC-408</td>
<td>Seminar/Group Discussion etc.</td>
<td>0 0 1 1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 5 12 32</td>
<td>500 200</td>
</tr>
</tbody>
</table>

Notes

- **BS**: Basic Sciences
- **HS**: Humanity Sciences
- **DC**: Department Core
- **DID**: Department Inter Disciplinary
- **IT**: Information Technology subjects
- **NECC**: Non Exam Credit Course
- **MST**: Mid Semester Test
- **TW**: Term Work (Session/ Practical)
- **C**: Credits
- **P**: Practical Hrs
- **L**: Lecture Hrs
- **T**: Tutorial Hrs
COURSE CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credits-4C</th>
<th>Theory Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Sciences BS-5</td>
<td>Mathematics-III</td>
<td>BE 301</td>
<td>L T P</td>
<td>Max Marks-100 Min Marks-35 Duration-3 Hrs</td>
</tr>
</tbody>
</table>

Unit 1 Functions of Complex Variables: Analytic functions, Harmonic Conjugate, Cauchy - Riemann Equations, Line integral, Cauchy’s theorem, Cauchy's Integral formula, Singular points, Poles and Residues, Residue theorem, Evaluation of Real Integral, Bilinear Transformation.

Unit 2 Numerical Analysis: Difference operators, Errors and Approximations, Interpolation, Inverse interpolation, Numerical differentiation, Numerical Integration by using Simpson’s method, Weddel’s rule and Gauss legendre open quadrature formula.

Unit 3 Solutions of algebraic and transcendental equations(Regular False, Newton-Raphson, Iterative, Graffe’s root squaring methods), Solutions of simultaneous algebraic equations, Solutions of ordinary differential equations (Tailor’s Series, Picard’s Method, Modified Euler’s method, Runge Kutta Method, Predictor-Corrector Method), Solution of Partial differential equation.

Unit 4 Introduction to optimization by linear programming, only two variable problems solution by graphical and simplex method, concept of degeneracy and duality; simple three variable transport and assignment problems and modeling into LPP.

Unit 5 Introduction to Q theory and Markovian process, time independent property of exponential distribution, solution of only M/M/1 (∞/∞/FCFS) Queues; introduction to design of experiments, factorial design, sampling methods, Taguchi Loss Function, robust design methods, variance reduction and six (±3)σ outliers in quality.

References:

2. Ramana BV; Higher Engineering Mathematics; TMH
4. Taha H; Operations Research an Introduction; PHI
5. Ross; Taguchi techniques for Quality engineering, TMH
6. Spiegel; Theory and problems of probability and statistics; TMH
7. Chandrasekharraiah DS; Engineering Maths Part II & III; Prism Books Pvt.
8. Johnson; Miller and Freund's Probability and statistics for Engineers; PHI.
9. Jaggi, Mathur; Engineering Mathematics; Khanna Publisher.
COURSE CONTENTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credits</th>
<th>Theory Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humanities</td>
<td>Energy Environment</td>
<td>BM/CS/EC/</td>
<td>L</td>
<td>Max Mark-100</td>
</tr>
<tr>
<td></td>
<td>Ethics and Society</td>
<td>EE/EI/EX/IT</td>
<td>T</td>
<td>Min Mark-35</td>
</tr>
<tr>
<td>Science</td>
<td></td>
<td>302</td>
<td>P</td>
<td>Duration-3Hrs</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit 1 Energy: linkage with development, world energy scenario, fossil fuel resource- estimates and duration, India’s energy scenario; Finite/ depleting energy resources, coal, oil, gas, nuclear fission, promises and present status of nuclear fusion energy; Renewable energy, solar, hydro, wind, biomass, ocean, tidal, wave and geothermal. Synergy between energy and environment, global environment issues, greenhouse gas emission, global warming, green energy solutions.

Unit 2 Society and environment: exponential growth in population, environmentally optimum sustainable population, free access resources and the tragedy of commons; environment problems and impact of P.A.T (Population, Affluence and Technology), environmentally beneficial and harmful technologies; environment impact assessment policies and auditing interaction between environment, life support systems and socio-culture system.

Unit 3 Ecosystem: definition, concepts, structure, realm of ecology, lithosphere, hydrosphere, biosphere, atmosphere-troposphere-stratosphere; energy balance to earth, matter and nutrient recycling in ecosystems; nitrogen, oxygen, carbon and water cycles, food producers, consumers and decomposers, food chains; biodiversity, threat and conservation of biodiversity. Worldviews and environmentally sustainable economic growth, introduction to Design For Environment (DFE), product lifecycle assessment for environment and ISO 14000; triple bottom-line of economic, environment and social performance; environmental ethics, its world impact and challenges.

Unit 4 (a) Air pollution-primary, secondary; chemical and photochemical reactions, effects of CO, NO, CH and particulates, acid rain, Ozone depletion; monitoring and control of pollutants (b) Noise pollution-sources and control measures. (c) Water pollution, analysis and management, heavy metals- and nuclear pollutions; industrial pollution from paper, pharmacy, distillery, tannery, fertilizer, food processing and small scale industries.

Unit 5 Ethics and moral values, ethical situations, objectives of ethics and its study, role morality and conflicts; values, policies and Organization Culture; Non-professional, quasi- and hard-professionals; preventive, personal, common and professional ethics; different ethical value criteria like utilitarian, virtue, right and duty ethics with discussion on the case of priority for improvement of urban (high traffic) or rural (low traffic) intersections causing equal number of fatalities; codes of ethics and their limitations; Institute of engineers code for corporate member, IEEE and ACM professional-code.

References:
1. Miller G. T Jr; Living in the environment; Cengage Publisher.
2. Cunningham W; Principles of Environmental Science: TMH
3. Harris CE, Prichard MS, Rabins MJ, Engineering Ethics; Cengage Pub.
4. Martin; Ethics in Engineering; TMH
5. Govindrajan, Natrajan, Santikumar; Engineering Ethics; PHI pub.
6. Rana SVS; Essentials of ecology and environment; PHI Pub.
7. Gerard Kiely, Environmental Engineering; TMH
8. Khan BH; Non Conventional energy resources; TMH Pub.
9. Raynold G.W. “Ethics in Information Technology; Cengage
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>code</th>
<th>Credit</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-1</td>
<td>Electronic Instrumentation</td>
<td>EC--303</td>
<td>L T P</td>
<td>Max. Marks-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Marks: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit-II Cathode Ray Oscilloscope (CRO): Different parts of CRO, Block diagram, Electrostatic focusing, Electrostatic deflection, Post deflection acceleration, Screen for CRTs, Graticules, Vertical and Horizontal deflection system, Time base circuit, Oscilloscope Probes, Applications of CRO, Special purpose CROs-Multi input, Dual trace, Dual beam, Sampling, Storage (Analog and Digital) Oscilloscope.

Unit-III AC Bridges: Maxwell’s bridge (Inductance and Inductance-Capacitance), Hay’s bridge, Schering bridge (High voltage and Relative permittivity), Wein bridge, Wagner earth detector, Impedance measurement by Q-meter. **Non-Electrical Quantities (Transducer)**: Classification of Transducers, Strain gauge, Displacement Transducer- Linear Variable Differential Transformer (LVDT) and Rotary Variable Differential Transformer (RVDT), Temperature Transducer- Resistance Temperature Detector (RTD), Thermistor, Thermocouple, Piezo-electric transducer, Optical Transducer- Photo emissive, Photo conductive, Photo voltaic, Photo-diode, Photo Transistor, Nuclear Radiation Detector.

Unit-IV Wave Analyzer (Frequency selective and Heterodyne), Harmonic Distortion Analyzer, Spectrum Analyzer, Network Analyzer, Signal and Function Generators, Sweep Frequency Generator, Pulse and Square Wave Generator, Beat Frequency Oscillator.

Unit-V Digital Measurement and Instruments: Advantages of Digital Instrument over Analog Instrument, Digital-to-analog conversion (DAC) - Variable resistive type, R-2R ladder Type, Binary ladder, Weighted converter using Op-amp and transistor, Practical DAC. Analog-to-digital Conversion (ADC) -Ramp Technique, Dual Slope Integrating Type, Integrating Type (voltage to frequency), Successive Approximations, digital voltmeters and multi-meters, Resolution and sensitivity of digital meter, PLC structure, principal of operation, response time and application.

References:
1. H. S. Kalsi : Electronics Instrumentation, TMH.
3. Helfric and Cooper: Modern Electronic Instrumentation and Measurement Techniques; Pearson.
List of Experiments (Expandable):
All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine.

1. Study of CRO and Function Generator.
2. Displacement measurement by LVDT.
3. Force measurement by strain gauge.
5. Temperature measurement by thermister, RTD and thermocouple.
6. Optical Transducer- Photo conductive, Photo voltaic, Photo-diode, Photo-Transistor
7. Design of digital to analog converter.
8. PLC operation and applications (for example: relay, timer, level, traffic light etc.)
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>code</th>
<th>Credit-6</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department DC-2</td>
<td>Electronic Devices</td>
<td>EC-304</td>
<td>L T P</td>
<td>Max. Marks-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Marks: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit-I: Semiconductor
- Intrinsic and extrinsic, p-type and n-type, energy band diagrams, majority and minority carrier, charge density in semiconductor, generation and recombination of charges, process of diffusion, diffusion and drift currents, Hall effects and its applications. p-n junction, depletion layer, potential barrier, electric field, forward and reverse biased junction, current components in p-n diode, current equation, V-I characteristics, cut in voltages of Si and Ge diode, transition and diffusion capacitance, power dissipation, p-n junction diode as rectifier, clipper and clamper.

Unit II: Optoelectronic and miscellaneous devices
- Characteristics and application of Zener diode, Varactor diode, Schottky diode, Tunnel Diode, PIN diode, LED, photoconductor cells, photodiodes, solar cell, phototransistors, opto-couplers, thermistors, Seven segment displays.

Unit-III: Bipolar junction transistor
- Construction, basic operation, current components and equation. CB, CE and CC-configuration, input and output characteristics. Early effect, region of operation- active, cutoff and saturation region, Ebers-Moll model, power dissipation in transistor ($P_{d_{\text{max}}}$ rating), Uni-junction Transistor (UJT) : Principle of operation, characteristics.

Unit IV: FET construction
- Construction, n channel and p channel, characteristics, parameters, equivalent model and voltage gain. Enhancement and depletion MOSFET and its characteristics, analysis of FET in various configuration.

Unit V: Thyristor Family
- Silicon Controlled Rectifier, V-I Characteristics, Transistor Analogy, Turn-On and Turn-Off Mechanism, Series and Parallel Combination of SCR, Protection Circuits. Introduction to Diac, Triac, Power MOSFET, IGBT and GTO.

References:
1. Boylestad and Nashelsky : Electronic Devices and Circuit Theory, Pearson Education
2. Millman and Halkias : Integrated electronics, TMH
3. Graham Bell : Electronic Devices and Circuits , PHI
5. Sendra and Smith : Microelectronics, Oxford Press.
8. Salivahanan et al : Electronic Devices and Circuits, TMH

List of Experiments (Expandable):
All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/ drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7 / PSPICE/ Labview / CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine.

1. V-I characteristics of various Diodes (p-n, Zener, Varactor, schottky, Tunnel, Photodiode etc)
2. Characteristics of Transistors (BJT and FET)
3. Study of Power electronic devices (Diac, Triac, SCR, Power Mosfet, IGBT etc.)
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DID 1</td>
<td>Network Analysis</td>
<td>BM/EC/EE</td>
<td>L T P</td>
<td>Max. Marks-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/EI/EX-305</td>
<td>3 1 2</td>
<td>Min. Marks: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit I
Introduction to circuit elements R,L,C and their characteristics in terms of linearity & time dependant nature, voltage & current sources controlled & uncontrolled sources KCL and KVL analysis, Nodal & mesh analysis, analysis of magnetically coupled circuits, Transient analysis: Transients in RL, RC&RLC Circuits, initial conditions, time constants. Steady state analysis: Concept of phasor & vector, impedance & admittance, Network topology, concept of Network graph, Tree, Tree branch & link, Incidence matrix, cut set and tie set matrices, dual networks, Dot convention, coupling co-efficient, tuned circuits, Series & parallel resonance.

Unit II
Network Theorems for AC & DC circuits- Thevenins & Norton’s, Superpositions, Reciprocity, Compensation, Substitution, Maximum power transfer, and Millman’s theorem, Tellegen’s theorem, problems with dependent & independent sources.

Unit III
Frequency domain analysis – Laplace transform solution of Integro-differential equations, transform of waveform synthesized with step ramp, Gate and sinusoidal functions, Initial & final value theorem, Network Theorems in transform domain

Unit IV
Concept of signal spectra, Fourier series co-efficient of a periodic waveform, symmetries as related to Fourier coefficients, Trigonometric & Exponential form of Fourier series.

Unit V
Network function & Two port networks – concept of complex frequency, Network & Transfer functions for one port & two ports, poles and zeros, Necessary condition for driving point & transfer function. Two port parameters – Z,Y, ABCD, Hybrid parameters, their inverse & image parameters, relationship between parameters, Interconnection of two ports networks, Terminated two port network.

References:
1. M.E. Van Valkenburg, Network Analysis, (PHI)
2. F.F.Kuo, Network Analysis.
3. Mittal GK; Network Analysis; Khanna Publisher
4. Mesereau and Jackson; Circuit Analysis- A system Approach; Pearson.
5. Sudhakar & Pillai; Circuit & Networks- Analysis and Synthesis; TMH
6. Hayt W.H. & J.E. Kemmerly; Engineering Circuit Analysis; TMH
7. Decarlo lin; Linear circuit Analysis; Oxford
8. William D Stanley : Network Analysis with Applications, Pearson Education
9. Roy Choudhary D; Network and systems; New Age Pub
11. Chakraborti :Circuit theory; Dhanpat Rai
12. B.Chattopadhyay & P.C.Rakshit; Fundamental of Electrical circuit theory; S Chand
13. Nilson & Riedel , Electric circuits ;Pearson
List of experiments (Expandable):
All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/ drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine.

1. To Verify Thevenin Theorem.
2. To Verify Superposition Theorem.
3. To Verify Reciprocity Theorem.
4. To Verify Maximum Power Transfer Theorem.
5. To Verify Millman’s Theorem.
6. To Determine Open Circuit parameters of a Two Port Network.
7. To Determine Short Circuit parameters of a Two Port Network.
8. To Determine A, B, C, D parameters of a Two Port Network.
9. To Determine h parameters of a Two Port Network.
10. To Find Frequency Response of RLC Series Circuit.
11. To Find Frequency Response of RLC parallel Circuit.
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit-4</th>
<th>Practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT-2</td>
<td>Java</td>
<td>CS/EC/BM 306</td>
<td>L T P</td>
<td>Max. Marks: 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Min. Marks: 25</td>
</tr>
</tbody>
</table>

UNIT-I Basic Java Features - C++ Vs JAVA, JAVA virtual machine, Constant & Variables, Data Types, Class, Methods, Objects, Strings and Arrays, Type Casting, Operators, Precedence relations, Control Statements, Exception Handling, File and Streams, Visibility, Constructors, Operator and Methods Overloading, Static Members, Inheritance: Polymorphism, Abstract methods and Classes

UNIT-V Advance Web/Internet Programming (Overview): J2ME, J2EE, EJB, XML.

References:
2. E. Balaguruswamy, “Programming In Java”; TMH Publications
3. The Complete Reference: Herbert Schildt, TMH

List of Program to be performed (Expandable):
1. Installation of J2SDK
2. Write a program to show Scope of Variables
3. Write a program to show Concept of CLASS in JAVA
4. Write a program to show Type Casting in JAVA
5. Write a program to show How Exception Handling is in JAVA
6. Write a Program to show Inheritance
7. Write a program to show Polymorphism
8. Write a program to show Access Specifiers (Public, Private, Protected) in JAVA
9. Write a program to show use and Advantages of CONSTRUCTOR
10. Write a program to show Interfacing between two classes
11. Write a program to Add a Class to a Package
12. Write a program to show Life Cycle of a Thread
13. Write a program to demonstrate AWT.
14. Write a program to Hide a Class
15. Write a Program to show Data Base Connectivity Using JAVA
16. Write a Program to show “HELLO JAVA ” in Explorer using Applet
17. Write a Program to show Connectivity using JDBC
18. Write a program to demonstrate multithreading using Java.
19. Write a program to demonstrate applet life cycle.
20. Write a program to demonstrate concept of servlet.
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credits-4C</th>
<th>Theory Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DID-2</td>
<td>Computer System</td>
<td>CS/IT/EC 401</td>
<td>L T P</td>
<td>Max. Marks-100 Min.Marks-35 Duration-3hrs.</td>
</tr>
</tbody>
</table>

Unit I Computer Basics and CPU: Von Newman model, various subsystems, CPU, Memory, I/O, System Bus, CPU and Memory registers, Program Counter, Accumulator, Instruction register, Micro operations, Register Transfer Language, Instruction Fetch, decode and execution, data movement and manipulation, Instruction formats and addressing modes of basic computer. 8085 microprocessor organization

Unit-II Control Unit Organization: Hardwired control unit, Micro and nano programmed control unit, Control Memory, Address Sequencing, Micro Instruction formats, Micro program sequencer, Microprogramming,

Arithmetic and Logic Unit: Arithmetic Processor, Addition, subtraction, multiplication and division, Floating point and decimal arithmetic and arithmetic units, design of arithmetic unit.

Unit-III Input Output Organization: Modes of data transfer – program controlled, interrupt driven and direct memory access, Interrupt structures, I/O Interface, Asynchronous data transfer, I/O processor, 8085 I/O structure, 8085 instruction set and basic programming. Data transfer – Serial / parallel, synchronous/asynchronous, simplex/half duplex and full duplex.

Unit-IV Memory organization: Memory Maps, Memory Hierarchy, Cache Memory - Organization and mappings. Associative memory, Virtual memory, Memory Management Hardware.

Unit V Multiprocessors: Pipeline and Vector processing, Instruction and arithmetic pipelines, Vector and array processors, Interconnection structure and inter-processor communication.

References:
1. Morris Mano: Computer System Architecture, PHI.
2. Gaonkar: Microprocessor Architecture, Programming, Applications with 8085; Penram Int.
4. Carter; Computer Architecture (Schaum); TMH
5. Carl Hamacher: Computer Organization, TMH
6. Tanenbaum: Structured Computer Organization, Pearson Education
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>DID-2</td>
<td>Control System</td>
<td>EC-402</td>
<td>L T P</td>
<td>Max. Marks-100 Min. Marks: 35 Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit I Basic Control System Terminology and Classification of control System, Examples of control System, Transfer Function of Linear Control System, Block Diagram Representation, Signal flow Graph Techniques.

Mathematical Modeling of Electrical Network: AC and DC Servomotors, Error Detector, Stepper Motor, Optical Encoder, Linearization.

Unit IV : Approaches to System Design, Types of Compensation, Design of Phase-Lag, Phase Lead and Phase Lead-Lag Compensators in Time and Frequency Domain, Proportional, Derivative, Integral and PID Compensation.

Unit V : Concept of State, State Variables and State Model, State Space Representation of Systems, Block Diagram for State Equation, Transfer Function Decomposition, Solution of State Equation, Transfer Matrix, Relationship between State Equation and Transfer Function, Controllability and Observability.

References:
4. Distefano; Feedback and Control System (Schaum); TMH
5. B. S. Manke : Linear Control System (with MATLAB Application), Khanna Publishers.
6. Ogata : Modern Control Engineering, PHI
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit-6</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental</td>
<td>Digital Electronics</td>
<td>EC-- 403</td>
<td>L T P</td>
<td>Max. Marks-100</td>
</tr>
<tr>
<td>Core</td>
<td></td>
<td></td>
<td>3 1 2</td>
<td>Min. Marks: 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit I: Review of Number systems and Binary codes. Binary arithmetic, addition, subtraction, multiplication and division algorithms. **Boolean algebra**: theorems and functions, Simplification of Boolean functions, minimization techniques, Karnaugh's map method, Quine and McCluskey's method, realization of various binary functions using AND, OR, NOT, XOR logic gates.

Unit II: Universal gates: NAND, NOR, realization of Boolean function using universal gates. Half and full adder, half and full subtractor, Series and parallel adder, BCD adders, look-ahead carry generator, Decoders, Encoders, multiplexers and de-multiplexers. Analysis and design of combination circuits, realization of various Boolean functions using NAND, NOR gates, and Multiplexers.

Unit III: Multivibrators: Astable, Monostable and bistable multivibrators, 555 timer chip and its application in multivibrators. **Flip-Flops**: R-S, Clocked R-S, T, D, J-K, race around problem, Master-slave J-K, State and Excitation Tables **Shift registers and counters**: synchronous and asynchronous counters, Binary ripple counter, up-down counter, Johnson and ring counter, Analysis and Design of Sequential Circuits.

Unit IV: Semiconductor memories: Organization and construction of RAM, SRAM, DRAM, RAMBUS ROM, PROM, EPROM, EEPROM, PAL and PLAs etc

Unit V: Logic families: RTL, DTL, TTL, ECL, IIL, PMOS, NMOS, and MOS logic etc. Interfacing between TTL and MOS, vice-versa.

References
2. W.H. Gotham : Digital Electronics, PHI.
3. Millman and Taub : Pulse, Digital and Switching Waveforms, TMH
5. Leach and Malvino : Digital Principles and Applications, TMH

List of Experiments (Expandable):
All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine.

1. To test and study operation of all logic Gates for various IC’s.
2. Implementation of AND, OR, NOT, NOR, EX-OR and X-Nor Gates by NAND and NOR Universal gates.
5. Design a BCD to excess-3 code converter.
6. Verification of the Demorgan’s Theorem.
8. Multiplexer/Demultiplexer based boolean function realization.
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit-6</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deparmental</td>
<td>Electronic</td>
<td>EC/BM-404</td>
<td>3 1 2</td>
<td>Max. Marks-100</td>
</tr>
<tr>
<td>Core DC-4</td>
<td>Circuits</td>
<td></td>
<td></td>
<td>Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit-I Amplifier Basics, Transistor as an amplifier, load line, Q-point and its selection criteria, designing of fixed bias and self-bias, stability of biasing circuits, calculation of stability factor.

Transistor at low frequency: frequency response, bandwidth, h-parameter analysis of CC, CB and CE configuration, simplified model, gain and impedance calculation of single stage amplifier.

Transistor at high frequency, high frequency model (hybrid-π), Parameters and their definition, Miller capacitance and its effect on voltage gain,

Unit-II Feedback amplifier: positive and negative feedback loop gain, effect of negative feedback on gain stability, distortion, bandwidth, input and output impedance of amplifier, types of feedback (voltage, current, series and shunt) and their analysis.

Oscillators: condition of sustained oscillation, RC phase shift, LC (Hartley and Collpit) Oscillators, Wein Bridge, Negative resistance (Tunnel diode and UJT) oscillators, crystal oscillators.

Unit III Power amplifier, classification, operation, analysis and design of Class A, Class B, Class-AB, Class C, transformer coupled, push pull and complementary symmetry amplifiers, power dissipation in transistors (Pdmax rating) and efficiency calculations.

Tuned amplifier and its applications, Q factor, selectivity and bandwidth, effect of loading, double tuning (synchronous and stagger)

Unit IV Cascade amplifiers, Calculation of gain, Input and output impedance, Effect of Cascading on bandwidth, Transformer, RC and direct-coupled amplifier and their performance.

Darlington connection, equivalent circuit and Calculation of gain and impedances, Cascade amplifier: advantage, circuit diagram and analysis, feedback pair and applications of BIFET, Bootstrapping technique.

Differential amplifier - configuration, transfer characteristics, DC analysis, h-parameter analysis, differential and common mode gain, CMRR, constant current source and current mirror, level shift.

Unit-V Operational amplifier (IC741), specifications, ideal and practical characteristics, frequency response, unity gain bandwidth, limitations, slew rate and its effect on full power bandwidth, input offset voltage, bias and offset currents, compensation.

Applications of Op-Amp: Inverting and non-inverting amplifier Analog computation, summer (inverting and non-inverting), averager, integrator, differentiator, scalar, sign changer, phase changer, multiplier, buffer, Differential amplifier, instrumentation amplifier, comparator, Schmitt trigger, precision rectifier, log and antilog amplifier, voltage-to-current and current-to-voltage converter.

References:
1. Millman and Halkias : Integrated electronics, TMH
2. Gayakwad : OPAMP and Linear Integrated Circuits, Pearson Education
3. Boylestad and Nashelsky : Electronic Devices and Circuit Theory, PHI
4. Sendra and Smith : Microelectronics, Oxford Press
5. Graham Bell : Electronic Devices and Circuits, PHI
6. Donald A Neamen : Electronic Circuits Analysis and Design, TMH
7. Salivahanan et al : Electronic Devices and Circuits, TMH
List of Experiments (Expandable):
All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine.

3. To design and construct a shunt and series regulator and find line and load regulation.
4. Design and performance evaluation of transistors amplifiers in CE, CB and CC configuration.
5. Design and performance evaluation of FET amplifiers.
7. Design and performance evaluation of power amplifiers.
Course Contents

<table>
<thead>
<tr>
<th>Category</th>
<th>Title</th>
<th>Code</th>
<th>Credit-6</th>
<th>Theory paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departmental Core DC-5</td>
<td>Analog Communication</td>
<td>EC-405</td>
<td>L T P</td>
<td>Max. Marks-100, Min. Marks: 35 Duration: 3 hrs.</td>
</tr>
</tbody>
</table>

Unit-I Different types of Signals
(Continuous, Discrete, Periodic), Time Domain and Frequency Domain Representation, Introduction to basic Transform Techniques applicable to these Signals.

Spectral Analysis: Fourier Technique, Fourier Transform and their Properties, Transform of Gate Signal, Impulse Function and Unit Step Function, Fourier Transform Technique for Periodic Signal, Transform of Train of Pulses and Impulses, Sine and Cosine wave.

Signal Energy and Power: Spectral Density of various types of signals, Spectra (Parseval's Theorem), Density Spectra of Periodic Gate and Impulse train.

Unit-II : Modulation Techniques

Unit-III : Angle Modulation
Frequency and Phase Modulation Frequency spectrum, bandwidth requirement, Frequency and Phase Deviation, Modulation Index, NBFM and WBFM, Multiple frequencies FM, FM Modulators: Direct (Parameter Variation Method) and Indirect (Armstrong) Method of frequency modulation. FM Detector: Slope Detector, Foster Seely Discriminator, Ratio Detector and PLL detectors.

Unit-IV : Radio Transmitters
AM transmitter, block diagram and working of Low Level and High Level Transmitters, Trapezoidal Pattern and Carrier Shift, SSB Transmitters, FM transmitters - Frequency Multiplication Applied to FM Signals, FM transmitters.

Unit-V Noise
Sources and types of noise and their power density, White Noise, Noise from Single and Multiple noise source for Linear Systems, Super Position of Power Spectrum, Equivalent Noise Bandwidth, Noise Figure, and Equivalent Noise Temperature, their Relationship, Calculation of Noise Figure and Noise Temperature for Cascade Systems, Noise Performance of Communication System, Band Pass Noise Representation in Terms of Low Pass, In-phase and Quadrature Phase Component and their Power Spectral Density, Figure of Merit, Calculation for AM, AM-SC and SSB System, Noise in Angle Modulate System, Figure of Merit for FM, Noise Density of Output of FM Detector, Pre-emphasis and De-emphasis, Phasor Representation of Noise, Capture Effect, Comparison of Noise Performance of AM and FM.

References:
1. B.P. Lathi: Modern Analog and Digital Communication System, Wiley Eastern limited
2. Taub and Schilling: Principles of communication Systems, TMH
3. Singh and Sapre: Communication Systems, TMH
5. S Ghose, Signals and Systems, Pearson Education.
6. A Bruce Carlson: Communication System, TMH
7. Steven: Communication Systems – Analysis and Design, Pearson Education
8. Hsu: Analog and digital communication (Schaum); TMH

List of Experiments (Expandable):

All experiments (wherever applicable) should be performed through the following steps. **Step 1**: Circuit should be designed/drafted on paper. **Step 2**: The designed/drafted circuit should be simulated using Simulation S/W (TINA-V7/ PSPICE/ Labview/ CIRCUIT MAKER). **Step 3**: The designed/drafted circuit should be tested on the bread board and compare the results with the simulated results. **Step 4**: The bread board circuit should be fabricated on PCB prepared on PCB machine..

1. Analysis of AM Modulation and Demodulation Techniques (Transmitter and Receiver), Calculation of Parameters
2. Analysis of FM Modulation and Demodulation (Transmitter and Receiver) and Calculation of Parameters
3. To Construct and Verify Pre-emphasis and De-emphasis and Plot the Waveforms.
5. To Construct Frequency Multiplier Circuit and to Observe the Waveform
6. Study of AVC and AFC.
7. Study of PLL chip (566) and its use in various systems
SECTION A: MATLAB

Introduction to MATLAB, Study of MATLAB programming environment, Modeling, Design and development of Programs.

Programs Related to Analog Communication- (Example-Plots of Different Signals and their Fourier Transforms, Computation of Linear and Cyclic Convolution between Two Signals, Simulation of Different Types of modulation, AM Transmitter and Receiver, FM Transmitter and Receiver, Simulation of a Communication System (Generation, addition of noise and Detection).

SECTION B: CIRCUIT SIMULATION/ PCB DESIGNING SOFTWARES

Study of Circuit Simulation Software (any one - TINA-PRO/ PSPICE/ Labview/ CIRCUIT MAKER).

PCB Layout Software (any one - PROTEL/ ORCADE/ ALTERA).

Design and Simulation of basic Electronic Circuits (Example Rectifiers, Amplifiers, Oscillators, Digital Circuits, Transient and steady state analysis of RC/RL/RLC circuits etc). Design and fabrication of PCB pertaining to various circuits studied on PCB machine.

References:
3. Palm; Matlab 7.4; TMH.
7. Hassan S; Automatic Control Systems (with MATLAB Programming); Kataria and Sons, Delhi.

List of Experiments/ Programs:
Programs to be performed based on the topics contained in the syllabus.